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; 3 INTRODUCTION
- The application of linear systems theory, particularly in the context of
ﬂ digital image processing, has been demonstrated to provide powerful research
X : approaches to a variety of problems in visual perception and human factors
.}‘ engineering of displays. It has supported methodologies in symbol legibil-
2 ity, display image quality assessment, reduction of aircraft observables,
.Sﬁ simulation of advanced cockpit display concepts, design of C3I displays, and
iﬁﬁ fundamental research into visual psychophysics. Digital image processing
%‘@ offers the researcher a means of generating highly controlled, calibrated
s visual stimuli in either hardcopy (photographic print or transparency) or
.35 softcopy (television) formats. Linear systems methods permit the researcher
’E@E to exercise precise control over the spatial frequency content of an image.
i The Human Engineering Division of the Air Force Aerospace Medical Research
\:i Laboratory (AFAMRL) has developed a state-of-the-art digital image pro-
v;: cessing facility to permit researchers in the laboratory, in other Air Force
;'-"‘

X agencies, and at supporting university and industrial organizations to
develop and apply digital image processing methods to current research

s

Iy issues. The Visual Image Processing, Enhancement, and Reconstruction

{3 (VIPER) facility continues to support the Optical Countermeasures and Decep-

N tion, Radar Information Transfer Systems Analysis, c3 Operator Performance

Engineering, Strategic Avionics Crewsystem Development Engineering Facility,

2&; Windscreen Assessment, and Aviation Vision research and development programs
< within AFAMRL.
-:ﬂ VIPER consists of an International Imaging Systems Model 70 image processing
355 system hosted on a Digital Equipment Corporation PDP 11/45 equipped with
E}E dual disk and dual tape drives and operating under RSX-11M, Image quantiza-
e tion is performed using a digitizing tablet, a television camera, or an
; - Eikonix Corporation digitizer, Hardcopy output is produced by either a

& Matrix Corporation or a Dicomed Corporation film recorder. Softcopy dis-
?sgg plays are presented on a variety (Tektronix, Conrac, SRL, Aydin) of color |
:-i? CRTs. A schematic outline of the facility and its capabilities is depicted
.ﬁ in Figure 1. |
%
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Linear systems methods of spatial filtering are employed in VIPER to
accomplish a variety of research objectives. Generally, these objectives
are divided among three broad classes. Images are analyzed to determine
various correlates of information content (i.e., image quality assess-
ment). Images are spatially filtered so as to exhibit precise physical
characteristics (i.e., stimulus generation). Images are reconstructed with
specified physical characteristics emphasized (i.e., image enhancement).

In order to accomplish the specific research objectives at hand and to make
effective use of a highly-interactive image processing capability such as
VIPER, the investigator must be able to determine what processing should be
performed and to evaluate how well a processed image satisfies his needs.

An appreciation of Fourier transform-based image processing methods is
clearly required of investigators in perception, sensor/display design,
image quality evaluation, bioengineering, and the host of other disciplines
that can exploit the power of Fourier analysis in designing and carrying out
system simulations and operator performance studies.

The most logical approach to Fourier analysis is through a discussion of
periodic functions. A periodic function of time is one that had its
beginning in the infinite past, and will continue into the infinite

future. Furthermore, a periodic function consists of a single pattern vari-
ation repeated endlessly over the function's doubly-infinite duration. This
single pattern has the duration T, called the period of the function. An
example function is portrayed in Figure 2. We note that T, the period,
separates the starting times for the pulses (or the ending times, or the
pulse centers, etc.). Any physical significance could be assigned to this
function. For instance, the pulses could represent the time each day that
the reader is at work; the absence of a pulse would then mean that the
reader was otherwise occupied. This example (or any other) immediately
discloses two problems with the definition of periodic temporal functions.
They are:

« 4 0 oo
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1. A phenomenon must be under careful control to be such that each
individual pattern (cycle) is exactly like every other one, in
every respect.

2. No known phenomenon extends into the infinite past, or can be
expected to extend into the infinite future.

The first problem can be handled by assuming that there is only one cycle or
period of the functional variation, and that means are provided to have it
occur repetitiously. The second problem, a philosophical one, can be dealt
with by saying that if a large number of cycles of variation are allowed to
occur (the phenomenon occurs over many periods), then the function can be
successfully treated as if it were periodic. This treatment is not uncom-
mon; inspection of a camera lens will disclose that the setting for infinite
range is very close to that for 15 feet, and 15 feet is many times the focal
length of the lens system. With this interpretation, Fourier analysis
"works" very well,

It is postulated that any “"periodic" temporal function, subject to the above
constraints, may be represented as a linear combination of simpler periodic
functions, having periods Ty, Ty, ..., T,, where

T

nTps
or all but one (n = 1) of the functions have periods shorter than the period
of the function under investigation. This linear combination is generally
described as the infinite sum of a weighted set of basis functions, the set
of basis functions being the set of "simpler periodic functions." An intui-
tively important set of basis functions is the sinusoids, or acoustically
speaking, the "pure tones,"

since their combinaticn with various weightings
serves to assist us in classifying musical instruments (and artists) when a
sustained ("periodic") sound is generated. From above, the case n =1 is
called the fundamental tone, and all larger values of n correspond to nth
harmonics. This simple connection cannot be made for other sets of basis
functions.
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It is also true, one notes, that when a musical instrument produces other
than a sustained sound, a dynamic combination of tones is produced, the
description of which is more easily given in terms of the frequencies
present (frequency = T'l) than in terms of any temporal mathematical expres-
sion. Such a case is usually described mathematically in terms of fre-
quency, but as a continuous function, rather than the discrete linear sum
described for periodic functions., One is thus able to distinguish between
passages played solo on a French horn, and the same passages played on an
oboe, by virtue of the "spectral characteristics" (frequency content), even
though the sounds produced are not sustained nearly long enough to be
treated as periodic. Thus, while no single-frequency tone is present, one
can intuitively accept the description in terms of frequency. This tech-
nique of analysis is commonly used, and is related to the use of the sinu-
soidal set of basis functions in periodic analysis.

Finally, two-dimensional phenomena of many types have descriptions in terms
of frequencies, except that the frequencies are not measured per second
(T'l) but per unit of distance (A'l). These frequencies are termed “spatial

frequencies.” One thinks of venetian blinds; some have wide slats, some
have narrow slats; the visual impressions obtained when looking through
partially-open blinds can be quite different, or even pleasant or unpleas-
ant. Some "light show" phenomena also demonstrate the effect. For impor-
tant two-dimensional phenomena, analysis in terms of spatial frequencies is
the only suitable approach, since the spatial details vary rapidly; one
thinks of comparing the visual distribution on a television display to a
musical passage. The source of psychophysical stimulation is the dynamic
time-variation. Thus, for the television display, a meaningful mathematical

analysis must be in terms of the spatial frequency content or capability.

The arguments given here in favor of analysis in terms of frequency content,
temporal or spatial, are meant to be both intuitive and compelling; the
technique is generally called Fourier analysis. The concepts, it has been
argued, are quite simple; the analysis, it is admitted, can be cumbersome.
The ideas given here are expressed mathematically in the following section,
for the reader's convenience. The remainder of the material is presented in
such a manner as to be useful without emphasis on mathematical descriptions.

11




DO

I'
LA

E K :
SOANAS,

39

¥

O

7
L

; !-<I..l'_" ]
AN

5l
e

Section 2
ANALYTIC BACKGROUND

Given a periodic time function, f(t) such that
f(t) = f(t £ nT) for any integer n (1)

where T is the period of the function, the longest time interval over which
the function does not replicate itself, as shown in Figure 1, then

ao - -] .
f(t) =5+ iii [an cos nuyt + b sin nwot] (2)
where

wg = E = on f (3)

where f is the Hertzian frequency (cycles per second) and wg the radian
frequency (radians per second).

The coefficients may be evaluated from the given f(t) by:

T
3 1 Z
=7 f(t) dt = average value of f(t) (4)
T
-2
2/’Tz
a, =7 A f(t) cos nwot dt (5)
3
z
-E/ i
b, =7 . f(t) sin nw,t dt (6)
-7

An alternate form is given by

® Jjnu.t
ft) = X c e °

(7)
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where

T .
-jnw.t
cn=% [?f(t)e 0" 4t (8)
-7

For functions of physical significance, it is assured that, for sufficiently
large values of n, the coefficients a,, b,, and c, are monotonically
decreasing functions of n. Thus, if the tone produced by a baroque organ

P A RAAC R A

were taken as f(t), the components or "harmonics" close to the fundamental
tone (n = 1) might be large (i.e., a, and by, or c,), but as n increases,
the magnitude of each successive harmonic is lower than the last one, until
finally inaudible to the human ear. One might observe that the harmonic
content of the tones produced by an organ are much more convenient
descriptors of the organ than an expression for f(t) to go with each tone.

As an example for reference, consider the periodic function of Figure 1:
A, -x <t < x

fo(t) = (9)
0, otherwise, - ;-< t <-£

Thus,
I x
a, =%/2 f(t) cos nyyt dt =$—A / cos nuyt dt
T
- ? _x

o _2A . X e,

= W sin nwot i = F;’O—T sin nmox
| X

= »4‘*,‘\ i 0__] (10)
a
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b =g/ f(t) sinn tdt=2—A xsinnwtdt
n"TJ; “0 T 0
- ? X
X
2A
= <= |-cos nuw,t =0 (11)
nwyT [ 0 ]-x
1 % -jnwot A X -jnwot
W *T f(t) € dt =T f € dt
-% -x
. A e-anot X _ 2Ax sin nuwgx (12)
-—ji'ugf 0 i, TOT L negx

Here, the zero value for b, is a consequence of symmetry, and the
coefficient values (harmonic amplitudes) a, and c, depend on the function

a sin nw.x
?ﬂ ®Cp " 2:-)( ne xo (13)
and 0
e [sin N, X
f(t) =—.‘r\— Z ( = )cos nwot (14)
n=1 %o
* sin nw jnu.t
-4 T [ 0 ] 0 (15)
n=- X
. Now, since
= o (2%
mgx = v (3 ) (16)

we see that the quantity (%.—x) , sometimes called the "duty cycle" for a
rectangular pulse, determines the harmonic structure for the function.

A strategy of some utility is to plot the function c, versus the variable
w, Since c, is nonzero only for integer n, the plot is of a discrete




0 4

P,
fi. function, having nonzero values only at the harmonic frequencies, as shown
:;; in Figure 3. The plot of Figure 2 now depicts a "time-domain" description
‘ of fp(t), while Figure 3 depicts a "frequency domain" description.
ﬁ;
- In an analysis of a periodic function for serious purposes, obtaining an
i infinite-series representation is a step of questionable progress. Thus, it
) is usually concluded that all harmonics higher than the Nth (where N is
_;§ usually selected, but sometimes calculated) are of negligible amplitude and
K are eliminated. The series is said to have been truncated, and the new
}; function is said to be band-limited. That is, no harmonics are present
' outside the band of frequencies,
-\
:,, -Nwo Cw < Nmo
R
" This simplification seems arbitrary, but is actually the source of only
small errors in many physical problems. The concept of band-limited func-
tions is very important in Fourier analysis.
X
' Given these concepts related to periodic functions, it is a simple matter to
conclude, in view of common experience, that nonperiodic functions of time
ﬁ; have associated with them a description in terms of frequency. The human
. voice is an excellent example of this, in that spoken conversation is not
y periodic, but can be categorized by its frequency content (i.e., "male
voice" versus "female voice," etc.). Furthermore, many important physical
j time functions that are not periodic are band-limited, as is the human
3 voice, and can be treated as such, for instance in the design of telephone
= systems,
{: The mathematics of this situation are done using the Fourier transform,
Y
LY @ :
' F(juw) = FF(t)] =/; f(t) e JYt gt (17)
A
;: F(ju) = A (0) 3% (18)
<.
Q
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It should be noted here that the radian frequency, w, is a continuous
variable, as opposed to the discrete nwy encountered in the analysis of
periodic functions.

As en example, let us define f(t) from Figure 2 such that

A, -x €t €x
f(t) = (19)
0, otherwise, for all time

Thus, this function is not periodic, but consists of a single rectangular
pulse. Now,

® . S
F(jw) =f f(t) et gy = Af e~Jut 4t
-0 -X

. X
= :%5 g-Jut = %ﬁ sin wx
-X
- sin wx
= 2Ax [ o ] (20)

The similarity to Equation (12) is obvious; Equation (20) is depicted by the
"envelope function" of Figure 3, with normalized T.

The calculation of F({jw) for typical mathematical functions is often easily
accomplished. Similarly, operations in the time domain can be shown to have
equivalent (and, in many important cases, simpler) operations in the fre-
quency domain,

Two-dimensional functions or spatial functions exist which are not time-
varying, but which can be described in terms of their spatial extent,
especially in terms of their extent within the field-of-view (FOV) of an
instrument, or observer. For instance, if this printed sheet of paper is
viewed by a human observer in an otherwise-black FOV, then:

1. If only one letter falls in focus within the FOV, it is easily
recognized, and corresponds to a low spatial frequency phenomenon
(i.e., not a lot is happening per unit angle in the FOV).
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2. If only one word falls in focus within the FOV, it is also easily
recognized, and corresponds to a higher spatial frequency
containing more information.

3. As the viewer distance increases, the entire page can be read,
then only black lines on the white page are discernible, then the
page appears as a white rectangle, a "dot," and finally nothing.

Thus, our sight/perception mechanism is determined by spatial frequencies,
as our hearing/perception mechanism is determined by temporal frequencies.
We are surrounded by physical temporal/hearable phenomena that we cannot
hear because of the band-limited response of our ears. We are surrounded by
physical spatial/seeable phenomena that we cannot see, because of the band-
limited response of our eyes. Changes in our position relative to the
phenomena may or may not change the situation. It would seem to be
éppropriate to apply the ideas of Fourier analysis in the two-dimensional
case involving linear processes, because of the historical successes
obtained with that technique. Thus, the two-dimensional Fourier transform
is defined:

® o ~jw.x -juw,y
FLExy1 = F (Jug, Juy) =f f fly) e 1 oe” & dxdy
-0 -0 (21)

i o (o
) R (wl)ea (w,) | (22)

A (w

where

wy) is the spatial frequency associated with variations in the
x-direction, and

wy is the spatial frequency associated with variations in the
y-direction.

For instance, we may consider a single white letter A formed in a 5 x 7
format in an otherwise black FOV, depicted in Figure 4.
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Figure 4. Block Letter in a 5 x 7 Format

In the x-direction, there are two lines per five spatial units, while in the
y-direction, there are two lines per seven spatial units. Thus, lower fun-
damental spatial frequencies are associated with the longer dimension of the
figure, and higher fundamental spatial frequencies are associated with the
shorter dimension of the figure.

At this point, we may list characteristics of the transform of
Equations (21) and (22) which are necessary for general utility.
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1. FIKf(x,y)] = k Ff(x,y)] (23)

Thus, only the relative brightness or density should be involved
in determining the transform characteristics. The absolute
brightness or density represents merely a multiplicative constant.

2. The transform should possess characteristics that are invariant
under translation in the FOV. 1

3. The transform should possess characteristics that are invariant
under rotation in the FOV.

The transform given possess all these characteristics and more, as will be
shown,

As an example, consider a rectangular solid of height A and base 2b x 2b,
situated with the base centered in the x-y plane. Then

b b =ju,x -jw,y
:"[f(x;.\/)] = F (jwls sz) =f f Ae 1 € 2 dXdy

-b “-b (24)

- A e (0 ey P (25)
(=3e;) (30,7 -b -b

_ 4A . .
= w0, sin wlb sin w2b (26)
. 2 sin wlb sin wzb
= 4Ab ab b (27)

One notes that 4AbZ is the volume of the solid, and that the remainder of
the expression is the same as we have associated with rectangular temporal
pulses, except that it is also two-dimensional. There is, thus, a thread of
unity established among the various functional renditions to which Fourier
analysis is applied.
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Finally, it must be noted that the Fourier analysis described above does not
lend itself to machine (i.e., digital computer) implementation because of
the implied continuity of the functions, and of the Lebesgue integrals. To
circumvent this difficulty, another function has been defined--the discrete
Fourier transform (DFT). In the use of this transform, the function of
time, f(t), or of position, f(x,y), is assumed to be "sampled" or evaluated
only at discrete points over its domain., The transform operation, which is
generally done by a computer or specialized processor, then produces another
set of discrete points in the appropriately-dimensioned frequency domain :
which generally approximates samples of the Fourier transform of the .
original continuous function. The "goodness" of the approximation depends

on many things, but largely on the number of samples of the original func-

tion that are obtained. As the number of samples increases, the approxima- :

9 Lt O 0 0

tion improves; the calculation time also increases, of course, along with
the requirement for machine memory.

To alleviate these problems, the fast Fourier transform (FFT) is generally
the one that is machine-implemented; it is merely an algorithm for computa-
tion of the DFT using special techniques to reduce the time (in the machine)
required for the calculation. An explanation of these transforms is beyond
the intended scope of this document.
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Section 3
THE VIPER CAPABILITY

The Visual Image Processing, Enhancement, and Reconstruction (VIPER)
laboratory facility includes an 125 Model 70E and DEC PDP 11/45 combination,
with outstanding capabilities for digital image processing. With this
equipment grouping, it is possible to display a visual image on a CRT,
obtained from:

a video camera
a video tape
computer storage, or

computer generation

and modify the image to suit the purposes of tne experimenter. The
apparatus is capable of then doing a two-dimensional FFT of the image, pro-
viding the output information points as real part and imaginary part, or
magnitude and phase. A map of the output (real part, imaginary part, magni-
tude, or phase) one parameter at a time, full screen can be displayed, and
reproduced immediately on Polaroid® prints, or, with processing delays, in a
number of other formats, including pseudocolor--enhanced images! That is,
the input image is presented in the x-y plane on a CRT display. After two-
dimensional transformation, two quantities correspond unambiguously to each
single original point. In a planar, or two-dimensional display, these
derived quantities can be presented, full screen, only one at a time. By
using split-screen techniques, however, the parameters can be displayed
simultaneously. The input image must be static, because the time required
for the transformation is not negligible. Dynamic transformation of a
running video tape, for instance, is not possible.

Several definitions must be made in preparation for two-dimensional fast
Fourier transform (2DFFT) processing. They are:

1. The field-of-view size, in pixels.

22
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2. The image size, in pixels. (It is frequently convenient not to
fill the entire field-of-view with image of interest for 20FFT
processing, as some of the higher spatial frequencies may be
Tost.)

3. The relationship between image brightness and the quantity that it
represents (object height, strength, etc.).

4, Any effects that might be produced because the image pixels do not
occur at uniform spacing.
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N 5. All the same parameters must be accounted for in the output

N images.

N

* It should be noted that, while the pictorial output transformation is

- extremely informative and convenient for purposes of interpretation, the
video and photographic processes may contain uncontrolled variables, which
can give rise to phenomena for which there is no accounting. Thus, if
accurate data on a transformation is required, a numerical printout is
available from the system, and should be used. In this process, one truly

% becomes familiar with the staggering volume of data generated, and the
-: difficulty involved in interpretation. Thus, one may use the pictorial
’ version to isolate those areas requiring additional study, to reduce the
- size of printout that must be actually analyzed.
2
{ For a simple example, an approximation to the unit-impulse function is
selected. The approximation consists of one white pixel in an otherwise~
- black surround of 128 x 128 pixels. This function is defined as
; :
2 & (x - Xgs ¥ - yo], where :
< L
: § (x - Xgs ¥ = ¥g) =0 for x # xy and y # y, ‘1
¥
Y |
. and {
i
o
- o
x =
£ R
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The unit impulse function is, thus, defined as a function of infinitesimal

width, infinite magnitude, and unity volume. It may be compared to an ideal
point source, for instance, using the definition,

o o -jox  -jw
F (jwls sz) =_[; .[; 6 (X = Xoa y - yo) € ! € Zy dxdy
(28)

-J'w

Xo =Jw,y
[11e 10 20 (29)

The 2DFTT has been performed for several values of xg, all with yg = 0.

The remaining figures consist of four photographs each of which, when taken
as a whole, is called a "Pictorial Transform Study" of the image named in
the title. A1l photographs within a figure have been made with the same
scale factor, as measured in pixels. In each figure, the upper left frame
is a photograph of a computer-generated rendition of the image under

study. The upper right frame is a photograph of the magnitude of the 2DFFT
of the image under study. The lower left frame is a photograph of the phase
of the 2DFFT of the image under study. The lower right frame is a photo-
graph of the power spectral density (PSD) of the image under study, with the
(0,0) value arbitrarily set equal to zero. This value represents the aver-
age brightness of the image within the FOV, and will ordinarily be large in
comparison with other values in the domain since no negative brightness
values are permitted. Most images would, therefore, appear to have all the
power associated with them concentrated at "D.C." The information sought is
at other points in the distribution. The "Pictorial Transform Study" set of
photographs, thus, contains the maximum amount of information that can be
associated with the image under study by the methods being employed here.
For xo = 0, Yo © 0,

F(Jup, Ju,) =1 (30)
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5
Eiﬁ as shown in Figure 5. Here, and in all that follows, the upper left photo ‘
;% is a "picture" of the image to be processed. Clearly, there is a single ¢
! : white pixel at the center of this frame, which corresponds to &(x,y), the ‘
. case in which xg = y5 = 0. The upper right frame is the magnitude of
'ﬁ? modulus of F (jwl, jwz) written upper right frame =
3
B IF (Gup, du,)| = A (), o) (31)
...
E:: Lower right frame = 6 (wl) + ¢ (wz) (32)
>
.'. where the notation is taken from Equations (21) and (22). Thus, in
: ~ Figure 5, the impulse is shown in the upper left frame. The magnitude (1)
gs is shown in the upper right frame, in which the assignment has been made
-i: white = 1, black = 0. Any irregularities or variations that are detected
9 have entered during film processing, or during printing. The lower left
:;: frame depicts the phase which is in this case zero, and the assignment 0° =
5:‘ gray has been made. The lower right frame depicts the power spectral den-
?;3 sity (PDS), which is the square of the magnitude of F (jwl, jwz), with the
\' value at w; = 0, w, = 0 set equal to zero, since this value is frequently
- large enough to "swamp out" the other values.
1Ei In Figure 6, xg = 4 pixels, yg = 0. In the upper left frame, the single
T white pixel can be seen to be in the center vertically, but slightly dis-
fij: placed to the right horizontally, when compared to Figure 5. As previously
_53 discussed, A(wy, wy) is exactly the same as in Figure 5, as is the PSD, of
N course. However, the phase now shows a strong variation, where the range
\f has been set as follows:
x o (w) = -180° = - = rad. » black

0° = 0 rad. + gray

[« ]
—
€
—
—
"

180° = = rad. * white

<
VY
€
—
—
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Figure 5. Pictorial Transform Study of a Unit Impulse
or "Delta Function" Located at (0,0)
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Figure 6.

Pictorial Transform Study of a Unit Impulse
or "Delta Function" Located at (4,0)
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. Thus,
" .’
et
‘~."<..: -jw ’x
= F oy, juy) =1¢ 170 (33)

gf .
*:E\ where x5 = 4 pixels.

\:_\

NN

In Figure 7, xq = 28 pixels, yg = 0. Again, the transform magnitude and PSD
remain the same, while the phase undergoes another drastic change in nature.

Finally, in Figure 8, xg = 60 pixels, yg = 0, and the same phenomena are
noted.

From the above, one might be tempted to generalize as follows:

jo(w ) Jo(w,)
F Loy, Jup) = K (A (a, w)] e 1 e 2 (34)

where:
K tells us "how much" exists.
A (wy,w,) tells us what the shape is, and
6 (w;) + ¢ (wy) tells us "where" the shape is within the FOV.

This generalization can be used carefully, with the knowledge that it is
incorrect, since A (w;, wy), 6 (w;), and ¢ (wy) are not independent func-
tions, but depend, one on the others in a complicated relationship.

In Figures 5, 6, 7, and 8, no variation in ¢ (w,) is present. That is
because yg = 0 in all cases. In general, both A (w), wp) and 6 (wy), ¢ (wy)
vary throughout the w; - wp plane. A good example of this variation is
provided by the calculations in Equations (24) through (27) for a rectangu-
lar solid situated with its base centered in the x-y plane. Figure 9
depicts the results of that calculation for a base size of 35 x 35 pixels

(b = 17 pixels) and a height, or brightness of A. The calculated result was

28
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Pictorial Transform Study of a Unit Impulse
or "Delta Function" Located at (28,0)
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Figure 8. Pictorial Transform Study of a Unit Impulse
or “Delta Function" Located at (60,0)
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Figure 9. Pictorial Transform Study of a Square
35 x 35 Pixels, Centered at (0,0)
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2 sin wlb sin wzb

F t‘jwl’ Jw2) = 4Ab wlb wzb (35)

Here, K = 4Ab% has been scaled for the machine, and is not directly
retrievable. However,

sin wlb sin wzb

wy, w,) = (36)
1 2 mlb w2b

A(

is very clearly shown, especially along the w) - wp axes. The off-axis
components have been attenuated by the photographic procedures. However,

Phase = 6 (wl) + ¢ sz) = 0 » gray or m * white

is very well depicted for all of the w; - w, plane contained in the frame.
This pheonmenon will be noted for most figures of any complexity; that is,
the phase information will be retained photographically with much better
fidelity than the magnitude information.

In Figure 10, the same square has been displaced by 17 pixels in the +y
direction (i.e., xg = 0, yg = 17 pixels). The magnitude remains unchanged,
the phase variation in the w; (corresponding to x) direction remains
unchanged, but a linear phase variation in the w, (corresponding to y)
direction is evident. The corresponding transform expression is

“Y0
] 2 -J > sin wlb sin “Zb
F (Ju, ju,) = 4Ab° € ab i (37)

In Figure 11, the same square has been displaced by 17 pixels in the +x
direction (i.e., xg = 17 pixels, yg = 0). Again, the magnitude function is
unchanged, as is the w, phase variation (from Figure 9); however, a linear
phase variation in the o (corresponding to x) direction is evident. The
corresponding transform expression is

“1%0
2 -J 5 sin wlb sin w,b
F Lle. sz) = 4Ab” € e ab (38)
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Finally, in Figure 12, xg = yg = 17 pixels, and the phase variation appears
to be extremely complicated, while the remaining variables exhibit familiar
properties. The corresponding transform expression is

W,y
. . 270 . .
. ) 2 =J -l sin wlb sin w?b
F (les Jw2J = 4Ab" € € w]_b

(39)

w2b<

The transform is invariant under translation, only in its magnitude. Phase
variation under translation may be described as strong.

Rotation of the square is depicted in Figure 13a, the angle of rotation,

45 degrees, not being to a symmetry axis of the display pixels. “or that
reason, the square edges are not smooth, and some size scaling was
required. While the square is still approximately the same size within the
FOV, each side of the square is 25 pixels, rather than 35. The square is
centered in the x-y plane. The magnitude information appears to have been
rotated, also by 45 degrees. The phase information, however, is not the

same as that of Figure 8 rotated by 45 degrees, although on lines corre-

sponding to the rotated w; - wy coordinate system, the approximation to

- a-a

simple rotation is good. It can, thus, be concluded that image orientation
within the x-y place is extremely important, especially when the field-of-
view is held constant. One might anticipate that a similarly rotated square
in a 256 x 256 pixel surround would, by virtue of superior sample spacing,
produce results more like those desired, as depicted in Figure 13 (this

chededadietede JR A2 ol ol

represents a small increase in performance for a substantial increase in

computation size).

An excellent image for further investigation of this problem is the circle,
itself insensitive to rotation, and also not capable of faithful rendition
in a field of 128 x 128 pixels, as depicted in Figure 14, The transform of
this figure should be a bright circular disk in the center, surrounded by
alternating rings, as shown in the magnitude plot. The phase plot should be
similar, with alternating gray (phase = 0) and white (phase = w) rings, each
of the same radial thickness, and of smooth circular shape. Inspection of
the phase frame shows that the rings are never smoothly circular and, as one
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Figure 12. Pictorial Transform Study of a Square
35 x 35 Pixels, Centered at (17,17)
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Figure 13a.
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Pixels, Centered at (0,0), and Rotated by 45 Degrees
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Figure 13b. Pictorial Transform Study of a Square 25 x 25 :
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Pictorial Transform Study of a 35 Pixel-
Diameter Circle, Centered at (0,0)

Figure 14,
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progresses outward from the center, the "rings" cease to be true rings, but
begin to show a structure, indicating that the original image is not truly
circular. Here, the frequency corresponding to radius in a w - ¢ plane, the
transform is a Bessel function, as in the optical Airy disk:

Jq (w)
Fo(jo) = /2 (40)

In this section, the analytic background of 2DFFT image processing has been
introduced, and the evaluation of gross transform properties has been used
to confirm the general correctness of the results obtained. However, cer-
tain limitations that may be imposed by the field-of-view in which the image
is observed have been disclosed, to place the esrtwhile experimenter on

guard when formulating the imagery to be processed.
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Section 4
PICTORIAL TRANSFORM ANALYSIS

41

o The VIPER photographic output consists of point data that are obscured by
.jf film characteristics and processing. The system includes provisions for
:ﬁ: “blowing up" the pictorial output so that each original pixel of data
= occupies several pixels in a square array. However, in using this process,
Qﬂ higher frequency components are "lost" (i.e., not present on the photograph
¢$ if the output array is held to the size of the input array), so that this
EE technique also has its disadvantages.
'3, For purposes of clarification, consider a rectangular image 35 pixels high
}Cj and 7 pixels wide, centered in a 128 x 128 pixel field-of-view, as shown in
;:: Figure 15. The 5:1 aspect ratio in the image should be preserved in the
-~ transform.
;:
o
Lo Analytically,
-:::
J',‘\
. 17 3 =juw.x -juy
o F (jwl, jwz) = f f f(x,y) € 1 dx | € 2 dy (41)
- -17 -3
L.
Qﬁ' where f(x,y) has been normalized to unity within the rectangle, and zero
"‘-.,‘
y outside,
o .
N Calculating,
YA
Cal
oy 177 1 -jwlx 3 -jwzy
F (Juy, ju,) = e € dy (42)
1 2 -jw
<17 L Y1
w -3
~ 17 [ ~junyy
- - Z sinsw|e Z a (43)
-~ =17 |1
4
e = sin 3w, sin 17w (44)
j{:_:) w, W, 1 2
e
‘o
® sin 3w, ] [sin 170
: = 204 1 2 (45)
s 3w 17w
o~ 1 2
oA
o
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Inspection of the magnitude in Figure 15 discloses the presence of two
normal sinc functions. However, brightness falls off rapidly on the axes,

and the off-axis components are essentially undetectable. The phase "plot"

TN of Figure 15 is, however, relatively unambiguous. By counting phase changes
5 A .

- from the center of the center (largest) phase area, one finds that

SO

::":: 7 7

NS m w

RS (46)
RN 35x

:_':‘: - 2 < 170)2 < 17w
A

¥l Thus, the total range of 3w) is 77 radians/display dimension, and the total
o5 range of 17w, is 34,57 radians/display dimension, an acceptable preservation
L of the 5:1 ratio.

o Figure 16 shows similar transform information for the same rectangle shiftead
-'&j so that its center is at (0,17) pixels. The magnitude plot is identical to
)

the previous one, and the phase is identical in the w; - direction, as

PR X
[y
.

expected, but displays a linear phase variation in the wy, - direction, pro-
duced by the shift in the y - coordinate.

P
P

"
o 8~

[y
‘e'e%a’a

Figure 17 shows the case for the rectangle centered at (17,0) pixels. Here,

o .~ ... 2, ..':
L]
.

- the wy variation is the same as the original (Figure 15), as is the w) mag-
i"’ nitude variation. The w; phase variation is linear, produced by the shift
an in the x - coordinate.
o3 Figure 18 depicts the rectangle centered at (17,17) pixels. The magnitude

e variation is the same as for the original (Figure 15). The phase variation
T shows linear components in both w; and w, directions, and has become rather

:iﬁ. complicated, as noted previously for the 35 x 35 pixel square, similarly
e

nk: displaced.

‘_,: It may be concluded that, given familiarity with the image function, the
TN

magnitude information will disclose what image is present. The phase infor-
mation will allow determination of the location of the image within the

~¢

A5

field-of-view. Based on this generalization, a common strategy is to con-
centrate on the magnitude information and neglect the phase information, the
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E;. location within the field-of-view generally being obvious without resort to
3; transform operations. This strategy is generally unwise, even though it is
k correct. In truth, the magnitude information and the phase information are
.- not independent. Given one, the other can be determined (although perhaps

j; with an unacceptable level of effort). Thus, the magnitude information

5: contains data as to what, but not where, the object is. Orientation with
= respect to the field-of-view can be determined. The phase information con-
B tains data from which not only where, but also what image is present. It is
f;& neglected, therefore, at the experimenter's peril.

3
2 The analysis performed here seems to be rather simple, and relatively
;:_ unproductive, in view of the quantity of data present. It is, nevertheless,

:: typical of that which can be accomplished in the absence of other data. The
f:E crucial ingredient is the skill and familiarity of the experimenter with
'i: elemental image shapes and their transforms from which image processing
fé} gains can be realized. Here again, a mental synthesis, from the super-
~i€ position of shapes present, of the transform magnitude function may be
‘:% possible without undue difficulty. Not so, in general, for the phase. The
‘~“ comparison of data for an unknown image with a library of data for known

.. images (map-matching or template-matching) can be rather more productive in
23 those cases to which it is applicable.

'hf Possibly the most general attitude that could be adopted, at least with
;i respect to the simple images considered to this point, is that they consist
éz of sample arrays of impulses such as those in Figures 5, 6, 7, and 8. For

o each of these functions, the magnitude function is unity, with the phase

- function varying according to position. The 7 x 35 pixel rectangle is com-
.i} posed of 245 such impulses, each with its own displacement from the center
E?: of the field-of-view. If only the magnitude functions were considered, one
:Ei might expect the transform magnitude to be uniform over the w; - w, plane
‘}i with a magnitude of 245. However, the interaction ("constructive interfer-
f? ence,”" "destructive interference") pattern formed by the phase plots
S:Z (possibly 35 varying only with ws; the other 203 varying with both) has the
f:i effect of not only producing a complex phase structure, but also producing
‘. the complex magnitude variation on the w) - w plane. For more general
o images, not all brightness values are either one or zero, and a perceptual
k(:
§J 47
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decomposition in terms of an array of impulses becomes hopelessly compli-

cated. This is, nevertheless, an accurate description of the physical
process at work, as can be seen from the defining relationship in
Equation (22), repeated here:

A j 0 (w j¢(w
Ffy)] = A (), w,) o) em( 2) (47)

The modification in the magnitude function is produced by the sum of the
phase functions:

e j[6 (w)) + ¢ (w,)] (48)

Analysis of this type has been accomplished in certain physical situations
with some success. In the situation being addressed here, and with a field-
of-view of 128 x 128 pixels, more than 16,000 impulse strengths and phase
patterns could conceivably be involved. Thus, a decomposition on this basis
would seem to be best accomplished over the entire array, using the 2DFFT.
Other building-block concepts may be utilized by accepting degradations in
resolution.
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Section 5
IMAGE CONSTRUCTION USING SQUARES

It would seem to be obvious that, if the pixels in a 128 x 128 pixels field-

of-view are too numerous for decomposition of the image by other than

machine techniques, the alternatives are to increase the size of the elemen- )
tal decomposition unit, or to decrease the number of pixels within the

field-of-view. The approaches should, of course, produce comparable

results.

A demonstration of a combination of these (increased elemental unit and
reduced FOV) approaches has been accomplished, using the 35 x 35 pixel
square of Figures 9, 10, 11, and 12 as the basic image, and considering it

a.p # 2 2 o 2 memmm

as, first, a 7 x 7 array of 5 x 5 pixel squares, and second, a 5 x 5 array
of 7 x 7 pixel squares. These results are shown and discussed here.

Depicted in Figure 19 are the data for a single 5 x 5 pixel square within a 1
128 x 128 pixel FOV. As the image is smaller than those considered previ-
ously, one notes the slower variation with spatial frequency, and the visi-

bility of off-axis lobes. With regard to the phase plate, a similar shaping .
is noted. With respect to the black areas within the white rectangles, it ;
is noted that they denote the same phase values. The gray areas (no pun

P T

intended) are quite well defined.

Figure 20 is for a symmetric array of five 5 x 5 pixel squares within a 15 x
15 pixel square, and Figure 21 is for a symmetric array of four 5 x 5 pixel
squares within a 15 x 15 pixel square. Because symmetry exists in the

rammaum & m w__a._

image, it is retained also in the transforms. Furthermore, the patterns
associated with the single 5 x 5 pixel square are discernible, within which
the "structure" caused by the symmetric "arraying" of identical figures can
be attributed to a coherent interference phenomenon, the coherence origi- !
nating in the transform operation, not the image. Figures 22 and 23 show
7 x 7 arrays of 5 x 5 pixel squares, again with symmetry retained in the
images, and in the transforms. The basic patterns for the 5 x 5 pixel
square are still present, but most observable, as one would anticipate, in i

the phase frames. Since the sum of the images is the 35 x 35 pixel square

.................................
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Pictorial Transform Study of a Symmetric
Array of Four 5 x 5 Pixel Squares in a
15 x 15 Pixel Matrix, Centered at (0,0)
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. (Figure 9), the sum of the transforms is the transform of the 35 x 35 pixel o
\ square. In terms of Equation (47), jij
: .
! ‘6 . - X :
. e (oo ] R 35 (¢ ) o3 (w, ) A (e I (o ) €J¢25 (w, )
- 35 Y7172 25 172 v
' 38,0 ) Go,, (w,) ]
2471 24472 :
* Ay (wl,wz) € € (49) o]
: 1'1
) 4
N It is unfortunately true that ]
2 ﬂﬁ
‘, Ayg (uya0y) # Apg (up,uy) + Ay (0,05 (50)
"
: because of the coherence related to the transformation. During laboratory
) experimentation, the truth of Equation (49) has been carefully verified.
» The coherence and symmetry properties noted here are completely predictable,
' and serve only to acquaint the reader with the significance of symmetry.
; This done, the effects of simple types of asymmetry are hopefully more
i clear.
::
N For instance, in Figure 24, one white 5 x 5 pixel square has been removed
‘: from Figure 23, in a position that maintains symmetry with respect to the
x-axis, but not the y-axis. The resulting amplitude plot is not remarkably
:: altered, but the haze plot change is of significant interest., Vestiges of
Qj the phase frame for Figure 23 are clearly visible, overlying a linearly
e varying component along the wy-axis, for which the given image is asym-
metric. (It must be remarked that the photographic renditions contained
~ herein can hardly be considered as data, having been "processed," in all
R
b senses of that word, too many times since its origination; the reader is
A encouraged to give attention to the gross aspects presented since the detail
: could be misleading).
At
‘
N In Figure 25, two white 5 x 5 pixel squares have been removed from
o Figure 23, in positions that maintain symmetry with respect to the x-axis,
'2 but not the y-axis. In Figure 26, the two squares are removed along an axis
;; rotated by 45 degrees and symmetrically with respect to the center of the
xl
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Figure 25.

Pictorial Transform Study of an Asymmetric
Array of 23 5 x 5 Pixel Squares in a 35 x 35
Pixel Matrix, Centered at (0,0)
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square. Finally, in Figure 27, the two sguaras are removed along the

rotated axis without symmetry with respect to the square's center.

The reader is urged to analyze these frames and draw conclusioans concerning
image decomposition, the relative information content »f wagnitude framnes
and phase frames, and the detectability of tne original 5 x 5 pixa2l patterns
in the transforms of the more complicated images.

Figures 28, 29, 30, 31, and 32 are similar to Figuras 19, 20, 21, 22, and
23, except that the 5 x 5 pixel squares have been replaced by 7 x 7 pixel
squares. The conclusions to be drawn are similar, and are attributahle to a

scaling factor on size, if that would be useful.

The “checkerboard" format used here is not without its own significance, and
would be a viable choice in any conventional, fixed-orientation, raster-
scanning system. It could undoubtedly be tied to a two-dimensional Walsh
transformation, as well as the Fourier version, but with some lass of
general appeal. Its use here, however, is motivated mainly hy its
compatibility with the more-or-less conventional raster scan, and by the
arbitrary degree of complexity of the images which can be easily constructed
electronically, and transformed. The word description analysis Taid on the
images and their transforms is indicative of the recommended approach for
the experimenter not inclined to work out the mathematical expressions.
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Figure 27, Pictorial Transform Study of an Asymmetric
Array of 23 5 x 5 Pixel Squares in a 35 x 35
Pixel Matrix, Centered at (V,0)
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Figure 28.

Pictorial Transform Study of a 7 x 7
Pixel Square, Centered at (0,0)
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Pictorial Transform Study of a Symmetric
Array of Five 7 x 7 Pixel Squares in a
21 x 21 Pixel Matrix, Centered at (0,0)
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Pictorial Transform Study of a Symmetric

Array of Four 7 x 7 Pixel Squares in a
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Pictorial Transform Study of a Symmetric
Array of 12 7 x 7 Pixel Squares in a

35 x 35 Pixel Matrix, Centere

Figure 31.
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Figure 32. Pictorial Transform Study of a Symmetric
Array of 13 7 x 7 Pixel Squares in a
35 x 35 Pixel Matrix, Centered at (0,0)
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Section 6
MORE COMPLICATED IMAGES

The images discussed so far have one characteristic in common--they have
been composed of areas within a 128 x 128 pixel field-of-view in which each
pixel is either white or black. In the more normal case, the image would
consist of various shades of gray, varying within the image area to consti-
tute, in fact, the information contained in the image. Since it is appro-
priate to tie this situation to the images previously investigated, regular
geometric shapes have been selected, and modeled with their bases in the
plane of the image. Brightness, or gray shade, has been made to represent
height above the base, with the highest points being white. This gradual
increase in image complexity has been selected to acquaint the experimenter
with the trends to be expected in the data obtained from more realistic
images.

In Figure 33, a rectangular pyramid is presented, and the multiplicity of
symmetry axes is evident in both the magnitude and phase frames. In
Figure 34, a triangular solid is shown, and here the result of primary
interest is the phase plot. In spite of the strong intensity variation
along the x-axis in the image plane, phase variation occurs only alony the
wop-axis in the transform plane, similar to that for a rectangular shape of
the base of the solid. Two conclusions can be drawn from this phase plot.
They are:

1. The figure is centered in the field-of-view.
2. The triangular figure produced by the intersection of the solid
and a plane normal to the y-axis produces no phase variation.

Thus, if this figure were displaced from center along the x-axis, a linear
phase variation in the wy direction would occur, similar to that observed
earlier with the displaced impulses.

Figure 35 depicts a wedge-shaped solid and, because of its asymmetry, the
linear phase variation mentioned above. In both figures, the w variation
of magnitude correctly appears to be very smooth.
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Figure 33.
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Pictorial Transform Study of a Rectanglar 35 x 35
Pixel Brightness Pyramid, Centered at (0,0)
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Figure 34. Pictorial Transform Study of a Rectangular 35 x 35
Pixel Brightness Triangle, Centered at (0,0)
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Pixel Brightness Wedge, Centered at (0,0)

Figure 35.




; Finally, in Figure 36, a cone-shaped solid is depicted. As noted before in
S the case of the circle (or cylinder, in the present context) circularly

!I symmetric shapes are difficult to construct in a square format consisting of
so few pixels. Thus, in the phase frame, the concentric ring structure is

;? maintained for only three cycles. For higher spatial frequencies, the

“: rectangular structure inherent in the raster scan format is evident, with
. eight symmetry axes apparent.

~

e These phenomena are stressed because the experimenter must determine the

best format in which to work, in consideration of the images to be investi-
gated. In preliminary evaluations, the presence of artifacts of sampling
must be determined, so that the number of pixels in the field-of-view may be
set at the lowest value which produces acceptable resolution. As the number
of pixels increases, so does the processing time and storage capacity
required.
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24 Figure 36. Pictorial Transform Study of a Circular
Brightness Cone, Centered at (0,0)
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Section 7
CONCLUSION

The purpose of this document is to serve as a tutorial for the experimenter
preparing to use the VIPER facility for image processing using Fourier
transform techniques. A considerable library of image transform data is
presented for study by the experimenter, with the conviction that an under-
standing of the simple shapes presented will assist in the evaluation of
more realistic images and transforms.

The facility staff can, of course, assist the new experimenter in
understanding the limitations imposed by the apparatus from the input sen-
sors to the various output formats. In general, however, the experimenter

must recognize valid results, and be able to interpret their physical
significance.
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